Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Oct 21 2012 10:38:14
%S 1,2,35,554,15297,451842,15929824,601077640,24488754772,1046792248856,
%T 46718718597567,2155032002133834,102259392504591235,
%U 4967499746642163574,246231868462969357492,12419324761881256326288,635990044563649443993091,33006906229799699591298070
%N G.f.: A(x) = exp( Sum_{n>=1} A069865(n)*x^n/n ) where A069865(n) = Sum_{k=0..n} C(n,k)^6.
%C Compare to a g.f. of Catalan numbers (A000108):
%C exp( Sum_{n>=1} A000984(n)*x^n/n ) where A000984(n) = Sum_{k=0..n} C(n,k)^2.
%F Equals row sums of triangle A218116.
%F Self-convolution of A218120.
%e G.f.: A(x) = 1 + 2*x + 35*x^2 + 554*x^3 + 15297*x^4 + 451842*x^5 + 15929824*x^6 +...
%e log(A(x)) = 2*x + 66*x^2/2 + 1460*x^3/3 + 54850*x^4/4 + 2031252*x^5/5 + 86874564*x^6/6 + 3848298792*x^7/7 +...+ A069865(n)*x^n/n +...
%o (PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^6)*x^m/m)+x*O(x^n)), n)}
%o for(n=0,25,print1(a(n),", "))
%Y Cf. A218116, A218120, A166990, A166992, A218117, A069865.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Oct 21 2012