login
A218036
a(n) = (n+1) + (n+3/2)*H(n) - (H(n)^3)/2, where H(n)=A002024(n).
1
4, 6, 9, 8, 12, 16, 10, 15, 20, 25, 12, 18, 24, 30, 36, 14, 21, 28, 35, 42, 49, 16, 24, 32, 40, 48, 56, 64, 18, 27, 36, 45, 54, 63, 72, 81, 20, 30, 40, 50, 60, 70, 80, 90, 100, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 24, 36, 48, 60, 72, 84, 96, 108, 120
OFFSET
1,1
COMMENTS
All terms are composite.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..3655 (Rows n=1..85 of triangle, flattened).
Blake Ralston, Elemental Complete Composite Number Generators, The Fibonacci Quarterly, Volume 23, Number 2, May 1985, pp. 149-150.
FORMULA
a(n) = (A002024(n)+1)*(n+1-A002024(n)*(A002024(n)-1)/2).
As a triangle: T(n, k) = (k + 1)*(n + 1) with 1 <= k <= n. - Stefano Spezia, Nov 23 2019
EXAMPLE
Sequence can be seen as a triangle that begins:
4;
6, 9;
8, 12, 16;
10, 15, 20, 25;
12, 18, 24, 30, 36;
14, 21, 28, 35, 42, 49;
16, 24, 32, 40, 48, 56, 64;
...
MATHEMATICA
Table[(k+1)*(n+1), {n, 1, 11}, {k, 1, n}]//Flatten (* Stefano Spezia, Nov 23 2019 *)
PROG
(Magma) /* As triangle */ [[n*k +n + k+1: k in [1..n]]: n in [1.. 20]]; // Vincenzo Librandi, Jan 27 2025
CROSSREFS
Cf. A002024.
Sequence in context: A073870 A236025 A377181 * A236536 A084335 A277893
KEYWORD
nonn,tabl,changed
AUTHOR
Michel Marcus, Oct 19 2012
STATUS
approved