Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Nov 10 2017 18:13:49
%S 1,2,10,106,1736,38414,1073178,36281032,1441336688,65849949118,
%T 3403003693310,196336487214234,12513043615743360,873250527590532680,
%U 66241197525447027832,5427563864923583687376,477771405475710621697632,44970647131664087237328798,4507506792104658670610331462
%N O.g.f.: Sum_{n>=0} 2*n^n * (n+2)^(n-1) * exp(-n*(n+2)*x) * x^n / n!.
%C Compare the g.f. to the LambertW identity:
%C 1 = Sum_{n>=0} 2*(n+2)^(n-1) * exp(-(n+2)*x) * x^n/n!.
%H G. C. Greubel, <a href="/A217901/b217901.txt">Table of n, a(n) for n = 0..345</a>
%F a(n) = 1/n! * Sum_{k=0..n} 2*(-1)^(n-k)*binomial(n,k) * k^n * (k+2)^(n-1).
%F a(n) = 1/n! * [x^n] Sum_{k>=0} 2*k^k*(k+2)^(k-1)*x^k / (1 + k*(k+2)*x)^(k+1).
%F a(n) = [x^n] 1 + 2*x*(1+2*x)^(n-1) / Product_{k=1..n} (1-k*x).
%F a(n) = [x^n] 1 + 2*x*(1-2*x)^(n-1) / Product_{k=1..n} (1-(k+2)*x).
%F a(n) ~ 2^(2*n+1/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - _Vaclav Kotesovec_, May 22 2014
%e O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 106*x^3 + 1736*x^4 + 38414*x^5 + 1073178*x^6 +...
%e where
%e A(x) = 1 + 2*1^1*3^0*x*exp(-1*3*x) + 2*2^2*4^1*exp(-2*4*x)*x^2/2! + 2*3^3*5^2*exp(-3*5*x)*x^3/3! + 2*4^4*6^3*exp(-4*6*x)*x^4/4! + 2*5^5*7^4*exp(-5*7*x)*x^5/5! +...
%e simplifies to a power series in x with integer coefficients.
%t Flatten[{1,Table[Sum[Binomial[n-1,j]*2^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* _Vaclav Kotesovec_, May 22 2014 *)
%o (PARI) {a(n)=polcoeff(sum(m=0,n,2*m^m*(m+2)^(m-1)*x^m*exp(-m*(m+2)*x+x*O(x^n))/m!),n)}
%o (PARI) {a(n)=(1/n!)*polcoeff(sum(k=0, n, 2*k^k*(k+2)^(k-1)*x^k/(1+k*(k+2)*x +x*O(x^n))^(k+1)), n)}
%o (PARI) {a(n)=1/n!*sum(k=0,n, 2*(-1)^(n-k)*binomial(n,k)*k^n*(k+2)^(n-1))}
%o (PARI) {a(n)=polcoeff(1+2*x*(1+2*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
%o (PARI) {a(n)=polcoeff(1+2*x*(1-2*x)^n/prod(k=0, n, 1-(k+2)*x +x*O(x^n)), n)}
%o for(n=0,20,print1(a(n),", "))
%Y Cf. A217899, A217900, A217902, A217903, A217904, A217905.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Oct 14 2012