Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Jan 28 2017 07:05:29
%S 1,1,4,38,576,12052,322848,10564304,408903680,18288706544,
%T 928575662400,52780935007968,3321208845997056,229232635832433664,
%U 17221699990084108288,1399139700462119135232,122235936429355565580288,11428226675376971405577984,1138551595285580854471388160
%N O.g.f.: Sum_{n>=0} n^n * (n+1)^(n-1) * exp(-n*(n+1)*x) * x^n / n!.
%C Compare the g.f. to the LambertW identity:
%C 1 = Sum_{n>=0} (n+1)^(n-1) * exp(-(n+1)*x) * x^n/n!.
%C More generally, if we define a(n) for fixed integers m, t, and s>=0, by:
%C (0) Sum_{n>=0} m * n^(s*n) * (n*t+m)^(n-1) * exp(-n^s*(n*t+m)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n
%C then the coefficients a(n) are integral and may be expressed by:
%C (1) a(n) = 1/n! * Sum_{k=0..n} m*(-1)^(n-k)*binomial(n,k) * k^(s*n) * (k*t+m)^(n-1).
%C (2) a(n) = 1/n! * [x^n] Sum_{k>=0} m*k^(s*k)*(k*t+m)^(k-1)*x^k / (1 + k^s*(k*t+m)*x)^(k+1).
%C (3) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1+m*x)^(n-1) / Product_{k=1..n} (1-k*t*x).
%C (4) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1-m*x)^(s*n) / Product_{k=1..n} (1-(k*t+m)*x).
%H G. C. Greubel, <a href="/A217900/b217900.txt">Table of n, a(n) for n = 0..345</a>
%F a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (k+1)^(n-1).
%F a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(k+1)^(k-1)*x^k / (1 + k*(k+1)*x)^(k+1).
%F a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1-k*x).
%F a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1-(k+1)*x).
%F a(n) = A078739(n,n) for n>=1.
%F a(n) = Sum_{k=0..n-1} binomial(n-1,k) * Stirling2(2*n-k-1,n) for n>0, where Stirling2(n,k) = A008277(n,k). - _Paul D. Hanna_, Nov 13 2012
%F a(n) ~ 2^(2*n-1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - _Vaclav Kotesovec_, May 09 2014
%e O.g.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 576*x^4 + 12052*x^5 + 322848*x^6 +...
%e where
%e A(x) = 1 + 1^1*2^0*x*exp(-1*2*x) + 2^2*3^1*exp(-2*3*x)*x^2/2! + 3^3*4^2*exp(-3*4*x)*x^3/3! + 4^4*5^3*exp(-4*5*x)*x^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/5! +...
%e simplifies to a power series in x with integer coefficients.
%t a[n_] := 1/n!*Sum[(-1)^(n-k)*Binomial[n, k]*k^n*(k+1)^(n-1), {k, 0, n}]; a[0]=1; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Mar 06 2013 *)
%o (PARI) {a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^(m-1)*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)}
%o (PARI) {a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(k+1)^(k-1)*x^k/(1+k*(k+1)*x +x*O(x^n))^(k+1)), n)}
%o (PARI) {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(k+1)^(n-1))}
%o (PARI) {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
%o (PARI) {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(k+1)*x +x*O(x^n)), n)}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
%o {a(n)=if(n==0,1,sum(k=0,n-1, binomial(n-1,k) * Stirling2(2*n-k-1,n)))} \\ _Paul D. Hanna_, Nov 13 2012
%o /* PARI Programs for the General Case (START) ...................... */
%o (PARI) {a(n,m=1,t=1,s=1)=polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*exp(-k^s*(t*k+m)*x+x*O(x^n))*x^k/k!), n)}
%o (PARI) {a(n,m=1,t=1,s=1)=(1/n!)*polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*x^k/(1+k^s*(t*k+m)*x +x*O(x^n))^(k+1)), n)}
%o (PARI) {a(n,m=1,t=1,s=1)=1/n!*sum(k=0, n, m*(-1)^(n-k)*binomial(n, k)*k^(s*n)*(t*k+m)^(n-1))}
%o (PARI) {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1+m*x)^(n-1)/prod(k=0, n, 1-t*k*x +x*O(x^(s*n))), s*n)}
%o (PARI) {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1-m*x)^(s*n)/prod(k=0, n, 1-(t*k+m)*x +x*O(x^(s*n))), s*n)}
%o /* (END) ........................................................... */
%Y Cf. A078739, A217899, A217901, A217902, A217903, A217904, A217905, A217910, A217913, A218300.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Oct 14 2012