Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 Apr 12 2013 12:35:12
%S 1,3,12,12,90,120,70,600,1800,1200,465,4725,19530,31500,12600,3507,
%T 42168,211680,529200,529200,141120,30016,414288,2451456,7902720,
%U 13124160,8890560,1693440,286884,4460760,30413880,117573120,266716800,312439680,152409600,21772800
%N Triangular array read by rows: T(n,k) is the number of simple labeled graphs on n nodes with unicyclic components having exactly k nodes with degree 1; n>=3, 0<=k<=n-3.
%C Column k=0 is A001205.
%C Row sums are A137916.
%F exp(A(B(x,y)), where A(x) is e.g.f. for A137916 and B(x,y) is e.g.f. for A055302, gives T(n,n-k) (offset).
%e ....o-o..........o-o......
%e ....| |..........|\ ......
%e ....o-o..........o-o......
%e T(4,0)=3 because the graph on the left has 4 nodes and 0 nodes with degree 1. It has 3 labelings.
%e T(4,1)=12 because the graph on the right has 4 nodes and 1 node with degree 1. It has 12 labelings.
%e 1,
%e 3, 12,
%e 12, 90, 120,
%e 70, 600, 1800, 1200,
%e 465, 4725, 19530, 31500, 12600,
%e 3507, 42168, 211680, 529200, 529200, 141120,
%e 30016, 414288, 2451456, 7902720, 13124160, 8890560, 1693440.
%t nn=10;f[list_]:=Select[list,#>0&];t=Sum[Sum[n!/k! StirlingS2[n-1,n-k]y^k x^n/n!,{k,1,n}],{n,0,nn}];Map[Reverse,Map[f,Drop[Range[0,nn]!CoefficientList[Series[ Exp[Log[1/(1-t)]/2-t/2-t^2/4],{x,0,nn}],{x,y}],3]]]//Grid
%K nonn,tabl
%O 3,2
%A _Geoffrey Critzer_, Mar 23 2013