Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 02 2019 21:39:27
%S 1,2,1,3,2,4,1,8,1,7,7,7,1,22,1,9,17,20,1,32,1,37,29,13,1,86,16,15,46,
%T 72,1,113,1,102,67,19,72,239,1,21,92,313,1,191,1,244,331,25,1,575,29,
%U 357,154,392,1,452,496,577,191,31,1,1979,1,33,443,750,1002
%N G.f.: Sum_{n>=0} (x + x^n)^n.
%C More generally, the following sums are equal:
%C (1) Sum_{n>=0} binomial(n+k-1, n) * y^n * (F + G^n)^n,
%C (2) Sum_{n>=0} binomial(n+k-1, n) * y^n * G^(n^2) / (1 - y*F*G^n)^(n+k),
%C for any fixed integer k; here, k = 1 and y = 1, F = x, G = x.
%H Paul D. Hanna, <a href="/A217669/b217669.txt">Table of n, a(n) for n = 0..1000</a>
%F Generating functions.
%F (1) Sum_{n>=0} (x + x^n)^n.
%F (2) Sum_{n>=0} x^(n^2) / (1 - x^(n+1))^(n+1). - _Paul D. Hanna_, Jun 02 2019
%e G.f.: A(x) = 1 + 2*x + x^2 + 3*x^3 + 2*x^4 + 4*x^5 + x^6 + 8*x^7 + x^8 +...
%e where
%e A(x) = 1 + (x + x) + (x + x^2)^2 + (x + x^3)^3 + (x + x^4)^4 + (x + x^5)^5 +...
%e Also
%e A(x) = 1/(1-x) + x/(1 - x^2)^2 + x^4/(1 - x^3)^3 + x^9/(1 - x^4)^4 + x^16/(1 - x^5)^5 + x^25/(1 - x^6)^6 + x^36/(1 - x^7)^7 + x^49/(1 - x^8)^8 + ...
%o (PARI) {a(n)=polcoeff(sum(m=0,n,(x+x^m +x*O(x^n))^m),n)}
%o for(n=0,100,print1(a(n),", "))
%o (PARI) {a(n)=polcoeff(sum(m=0, n, x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+1)), n)}
%o for(n=0, 100, print1(a(n), ", "))
%Y Cf. A217667, A217668, A325997, A325998, A325999.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Oct 10 2012