login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(2-x)^(n-k).
4

%I #12 Sep 18 2013 10:17:54

%S 1,2,4,12,38,116,360,1144,3670,11836,38392,125160,409628,1345000,

%T 4428752,14618608,48356838,160260332,532009688,1768729736,5888250996,

%U 19626282328,65489004464,218743627408,731311554044,2447018357208,8194289368240,27459924376592

%N G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(2-x)^(n-k).

%C Radius of convergence of g.f. is r = 1-sqrt(2)/2 = 0.2928932...

%C More generally, given

%C A(x) = Sum_{n>=1} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k),

%C then A(x) = 1 / sqrt( (1 - t*x + 2*x^2)^2 - 4*x^2 )

%C and the radius of convergence r satisfies: (1-r)^2 = r*(t-r) for t>0.

%H Vincenzo Librandi, <a href="/A217616/b217616.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: A(x) = 1 / sqrt( (1 - 2*x + 2*x^2)^2 - 4*x^2 ).

%F G.f.: A(x) = 1 / sqrt( (1-4*x+2*x^2)*(1+2*x^2) ).

%F G.f. satisfies: A(x) = [1 + 2*x^2*Sum_{n>=0} A000108(n)*(-x*A(x))^(2*n)] / (1-2*x+2*x^2) where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan

%F numbers.

%F Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2) + 4*(2*n-3)*a(n-3) - 4*(n-2)*a(n-4). - _Vaclav Kotesovec_, Sep 17 2013

%F a(n) ~ sqrt(8+6*sqrt(2)) * (2+sqrt(2))^n/(4*sqrt(Pi*n)). - _Vaclav Kotesovec_, Sep 17 2013

%e G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 38*x^4 + 116*x^5 + 360*x^6 +...

%e where the g.f. equals the series:

%e A(x) = 1 +

%e x*((2-x) + x) +

%e x^2*((2-x)^2 + 2^2*x*(2-x) + x^2) +

%e x^3*((2-x)^3 + 3^2*x*(2-x)^2 + 3^2*x^2*(2-x) + x^3) +

%e x^4*((2-x)^4 + 4^2*x*(2-x)^3 + 6^2*x^2*(2-x)^2 + 4^2*x^3*(2-x) + x^4) +

%e x^5*((2-x)^5 + 5^2*x*(2-x)^4 + 10^2*x^2*(2-x)^3 + 10^2*x^3*(2-x)^2 + 5^2*x^4*(2-x) + x^5) +...

%t CoefficientList[Series[1/Sqrt[(1-2*x+2*x^2)^2-4*x^2], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 17 2013 *)

%o (PARI) {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(2-x)^(m-k) + x*O(x^n))), n)}

%o for(n=0,40,print1(a(n),", "))

%Y Cf. A217615, A217617, A217461, A216434.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Oct 09 2012