login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. 1/2*sqrt(sec(2*x))-1/2, (even part).
0

%I #21 Mar 28 2024 16:28:26

%S 0,1,14,556,43784,5723536,1119636704,306179943616,111530881745024,

%T 52199950088663296,30524582707646303744,21808622670887632792576,

%U 18692756653071421750052864,18931292094375391032677011456,22364730782577535845815428112384

%N E.g.f. 1/2*sqrt(sec(2*x))-1/2, (even part).

%F a(n) = sum(m=1..2*n, ((-1)^m*C(2*m-2,m-1)*sum(k=m..n, C(k-1,m-1)* sum(j=2*k..2*n, C(j-1,2*k-1)*j!*2^(2*n-m-j)*(-1)^(n+k+j+1)* stirling2(2*n,j))))/m).

%F G.f.: T(0)/2 -1/2, where T(k) = 1 - x*(2*k+1)*(2*k+2)/( x*(2*k+1)*(2*k+2) - 1/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 25 2013

%F a(n) ~ 2^(6*n+1)*n^(2*n)/(Pi^(2*n+1/2)*exp(2*n)). - _Vaclav Kotesovec_, Nov 07 2013

%t a[n_] := Sum[ ((-1)^m*Binomial[2*m-2, m-1]* Sum[ Binomial[k-1, m-1]* Sum[ Binomial[j-1, 2*k-1]* j!*2^(2*n-m-j)*(-1)^(n+k+j+1)*StirlingS2[2*n, j], {j, 2*k, 2*n}], {k, m, n}])/m, {m, 1, 2*n}]; Table[a[n], {n, 0, 14}] (* _Jean-François Alcover_, Feb 22 2013, translated from Maxima *)

%t With[{nn=30},Take[CoefficientList[Series[(Sqrt[Sec[2x]]-1)/2,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* _Harvey P. Dale_, Mar 28 2024 *)

%o (Maxima) a(n):=sum(((-1)^m*binomial(2*m-2,m-1)*sum(binomial(k-1,m-1)* sum(binomial(j-1,2*k-1)*j!*2^(2*n-m-j)*(-1)^(n+k+j+1) *stirling2(2*n,j), j,2*k,2*n), k,m,n))/m, m,1,2*n);

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, Oct 07 2012