login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217529
a(n) = 2^(n-4)*(4*n^2 - 16*n + 23).
1
23, 86, 284, 856, 2416, 6496, 16832, 42368, 104192, 251392, 596992, 1398784, 3239936, 7430144, 16891904, 38109184, 85393408, 190185472, 421265408, 928514048, 2037383168, 4452253696, 9693036544, 21030240256, 45483032576, 98079604736, 210923159552
OFFSET
4,1
LINKS
W. Griffiths, R. Smith and D. Warren, Almost avoiding pairs of permutations, PU. M. A. Vol. 22 (2011), 129-139.
FORMULA
From Colin Barker, Oct 17 2012: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
G.f.: -x^4*(44*x^2 - 52*x + 23)/(2*x-1)^3. (End)
MATHEMATICA
Table[2^(n-4) (4 n^2 - 16 n + 23), {n, 4, 30}] (* Vincenzo Librandi, Mar 11 2013 *)
LinearRecurrence[{6, -12, 8}, {23, 86, 284}, 30] (* Harvey P. Dale, Oct 06 2019 *)
PROG
(Maxima) makelist(2^(n-4)*(4*n^2-16*n+23), n, 4, 30); /* Martin Ettl, Oct 15 2012 */
(Magma) [2^(n-4)*(4*n^2-16*n+23): n in [4..30]]; // Vincenzo Librandi, Mar 11 2013
CROSSREFS
Sequence in context: A056580 A010011 A172117 * A284711 A193018 A044210
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 13 2012
STATUS
approved