login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217516 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (1234)*. 1
7, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9, 8, 5, 4, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

REFERENCES

Klaus Sutner and Sam Tetruashvili, Inferring Automatic Sequences, http://www.cs.cmu.edu/~sutner/papers/auto-seq.pdf

LINKS

Table of n, a(n) for n=2..94.

FORMULA

Ultimately periodic with period length 4.

G.f.: x^2(7 + 8x + 5*x^2 + 4x^3 + 2x^4)/((1 - x^4)). - Vincenzo Librandi, Nov 19 2012

MATHEMATICA

Join[{7}, CoefficientList[Series[(8 + 5*x + 4*x^2 + 9x^3)/((1 - x^4)), {x, 0, 30}], x]] (* Vincenzo Librandi, Nov 18 2012 *)

PROG

(MAGMA) [7] cat &cat[[8, 5, 4, 9]: n in [0..30]]; // Vincenzo Librandi, Nov 18 2012

CROSSREFS

Sequence in context: A225404 A320413 A076419 * A071420 A031139 A215733

Adjacent sequences:  A217513 A217514 A217515 * A217517 A217518 A217519

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Oct 07 2012

EXTENSIONS

Terms corrected by Vincenzo Librandi, Nov 18 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 18:52 EDT 2020. Contains 334748 sequences. (Running on oeis4.)