Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #22 Sep 08 2022 08:46:04
%S 191,863,1091,1871,2963,3491,3863,4451,9011,15731,21191,21611,29363,
%T 30851,35531,42863,44651,45863,47711,50231,52163,60251,65963,68171,
%U 71171,75011,100151,101051,109331,112163,119891,144611,147863,164663,179951,204791,254963
%N Primes of the form 2*n^2 + 74*n + 35.
%C Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
%C 2*a(n) + 1299 is a square. - _Vincenzo Librandi_, Apr 09 2015
%H Vincenzo Librandi, <a href="/A217500/b217500.txt">Table of n, a(n) for n = 1..3000</a>
%t Select[Table[2n^2 + 74n + 35, {n, 600}], PrimeQ]
%o (Magma) [a: n in [1..600] | IsPrime(a) where a is 2*n^2 + 74*n + 35];
%Y Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), this sequence (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
%Y Cf. A054723.
%Y Subsequence of A002145.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Oct 09 2012