Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 27 2017 11:31:47
%S 1,6,43,396,4565,64146,1073919,20996376,471081385,11947911966,
%T 338204687315,10570101018276,361458024882045,13421571912745386,
%U 537661560385125031,23108777539028187696,1060571767117824260945,51760585513634983767606
%N Convolution of the numbers in sequence A080253.
%F a(n) = sum(c(k)*c(n.k),k=0..n), where c(n) = A080253(n).
%F a(n) ~ n! * 2^(n + 1/2) / (log(2))^(n+1). - _Vaclav Kotesovec_, Nov 27 2017
%t t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k]c[n-k], {k,0,n}], {n,0,100}]
%o (Maxima) t(n):=sum(stirling2(n,k)*k!,k,0,n);
%o c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
%o makelist(sum(c(k)*c(n-k),k,0,n),n,0,40);
%Y Cf. A080253, A000670, A217483, A217484, A217486, A217487, A217488.
%K nonn
%O 0,2
%A _Emanuele Munarini_, Oct 04 2012