login
3-adic valuation of A217407.
2

%I #11 Sep 07 2014 08:34:31

%S 35,20,59,42,63,5,69,73,21,43,71,1149

%N 3-adic valuation of A217407.

%C See main sequence for rationale.

%e The first number that has only 3 and 5 as prime factors and has prime counts of each digit 0-9 in its decimal representation is (3^35)*(5^17), so, corresponding to that being A217407(1), this sequence's first term is 35.

%o (PARI) prDigits(n)=my(d=digits(n), v=vector(10)); for(i=1, #d, v[d[i]+1]++); for(i=1, 10, if(!isprime(v[i]), return(0))); 1

%o list(lim)=my(v=List(), t); for(a=0, log(lim+.5)\log(5), t=5^a; while(t<=lim, if(prDigits(t), listput(v, t)); t*=3)); apply(k -> valuation(k,3), vecsort(Vec(v))) \\ _Charles R Greathouse IV_, Sep 19 2013

%Y Cf. A217407, A217409.

%K nonn,base,less

%O 1,1

%A _James G. Merickel_, Oct 02 2012