login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 3^r * 5^s whose decimal representation has a prime number of each digit 0-9.
13

%I #30 Apr 06 2020 18:39:50

%S 38171039656829610443115234375,129892841018736362457275390625,

%T 1766298261467341813095601383375,83480063729486358039093017578125,

%U 715350795894273434303718560266875,172661884789704345166683197021484375,65186341275865666700926353804318984375,5280093643345119002775034658149837734375

%N Numbers of the form 3^r * 5^s whose decimal representation has a prime number of each digit 0-9.

%C This sequence in particular is motivated by the coincidence that both (2^41)*(3^43) and (3^43)*(5^47) have prime numbers of each digit.

%H Robert Israel, <a href="/A217407/b217407.txt">Table of n, a(n) for n = 1..11</a>

%F a(n) = 3^A217408(n) * 5^A217409(n).

%e The first term here is (3^35)*(5^17), corresponding to A217408(1)=35 and A217409(1)=17. Its decimal representation has two each of 0's, 2's, 7's, 8's and 9's; three each of 4's, 5's and 6's; and 5 each of 1's and 3's.

%p N:= 10^100: # to get all terms <= N

%p filter:= proc(n) local L,P,d;

%p L:= convert(n,base,10);

%p P:= Vector(10);

%p for d in L do P[d+1]:= P[d+1]+1 od:

%p andmap(isprime,P);

%p end proc:

%p sort(select(filter, [seq(seq(3^r*5^s, r=0..floor(log[3](N/5^s))),s=0..floor(log[5](N)))])); # _Robert Israel_, May 08 2017

%o (PARI) prDigits(n)=my(d=digits(n), v=vector(10)); for(i=1, #d, v[d[i]+1]++); for(i=1, 10, if(!isprime(v[i]), return(0))); 1

%o list(lim)=my(v=List(), t); for(a=0, log(lim+.5)\log(5), t=5^a; while(t<=lim, if(prDigits(t), listput(v, t)); t*=3)); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Sep 19 2013

%Y Subsequence of A215876.

%Y Cf. A216854, A217408, A217409, A217404, A217410, A217413, A217416, A217419, A217422, A217425, A217428, A217431.

%K nonn,base,less

%O 1,1

%A _James G. Merickel_, Oct 02 2012

%E More terms from _Robert Israel_, May 08 2017