login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217111 Number of pandigital numbers <= 10^n. 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 3265920, 182891520, 5751285120, 134183589120, 2592611400960, 43947813288960, 676736110229760, 9685234777397760, 130890592784891520, 1689704521363998720, 21016063609130056320, 253507542701850904320, 2981020379966298432000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,10
COMMENTS
The number of numbers with <= n digits which contain all decimal digits 0..9.
The ratio a(n)/10^n indicates the relative proportion of pandigital numbers <= 10^n compared to all numbers <= 10^n. Since that ratio converges to the limit 1 for n -> oo this can be expressed for large numbers as follows (in a slightly popular manner): "Almost all numbers contain all decimal digits 0..9".
Example: a(n)/10^n = 0. 99973107526479... for n = 100; in this case 99.9731...% of all numbers <= 10^100 contain all digits 0..9. Conversely, only the tiny proportion of 0.000268924735210... (< 0.03%) lacks at least one digit. That's astonishing! Intuitively, this is not what one would expect. In fact, for smaller numbers (with which most people are faced normally) the relative portion of numbers which missing at least one digit is significantly larger. Of course, for n < 10 the portion is 100%, and even for numbers <= 10^10 or <= 10^20 the relative proportion of numbers which do not contain all digits 0..9 is 99.96734...% or 78.98393...%, respectively. 10^27 is the least power of 10 such that the pandigital numbers hold the majority. Here, the proportion of pandigital numbers among all numbers <= 10^27 is 51.50961...%. So one could bet that a randomly chosen number <= 10^27 contains all digits.
Partial sums of A217110.
LINKS
FORMULA
a(n) = 9*9!*Sum_{j=1..n} S2(j,10), where the S2(j,10) are the Stirling numbers of the second kind (cf. triangle A008277).
Asymptotic behavior:
Limit_{n->oo} a(n)/10^n = 1.
G.f.: g(x) = 9*9!*x^10/((1-x)*Product_{j=1..10} (1-jx)).
EXAMPLE
a(k) = 0, for k < 10 since there are no pandigital numbers <= 10^9, trivially.
a(10) = 9*9!, since the first digit can be in the range 1..9 and for the following 9 digits there are 9, 8, 7, ..., 1 possible values.
MATHEMATICA
3265920 Accumulate[StirlingS2[Range[25], 10]] (* Harvey P. Dale, Oct 16 2022 *)
CROSSREFS
Sequence in context: A203987 A357755 A217110 * A036471 A206316 A186959
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Feb 13 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 04:58 EDT 2024. Contains 370952 sequences. (Running on oeis4.)