login
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 6) with t_0 = t_1 = ... = t_{j-1} = 2.
7

%I #19 Nov 30 2017 16:21:35

%S 32,40,48,56,60,65,71

%N Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 6) with t_0 = t_1 = ... = t_{j-1} = 2.

%D T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.

%D V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

%H T. Ahmed, <a href="http://www.emis.de/journals/INTEGERS/papers/j6/j6.Abstract.html">Some new van der Waerden numbers and some van der Waerden-type numbers</a>, Integers, 9 (2009), A06, 65-76.

%H T. Ahmed, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ahmed/ahmed2.html">Some more Van der Waerden numbers</a>, J. Int. Seq. 16 (2013) 13.4.4

%H B. Landman, A. Robertson, and C. Culver, <a href="http://www.emis.de/journals/INTEGERS/papers/a10int2003/a10int2003.Abstract.html">Some new exact van der Waerden numbers</a>, Integers, 5(2) (2005), A10.

%Y Cf. A217005, A217007, A217008, A217058, A217059, A217236, A217237.

%K nonn,more,hard

%O 0,1

%A _Tanbir Ahmed_, Sep 25 2012

%E a(6)=71 added by _Tanbir Ahmed_, Dec 07 2012