login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 1 = Sum_{n>=0} a(n) * x^n * Sum_{k=0..2*n+1} binomial(2*n+1,k)^2 * (-x)^k.
0

%I #6 Dec 11 2024 06:27:21

%S 1,1,9,216,9685,690129,71218224,10016312400,1839013713405,

%T 426795483514725,122096137679279577,42196285096882327872,

%U 17327812666870134181584,8338575020551966129589776,4647348123388957546230426120,2969504710005383652330487580832

%N G.f.: 1 = Sum_{n>=0} a(n) * x^n * Sum_{k=0..2*n+1} binomial(2*n+1,k)^2 * (-x)^k.

%C Compare g.f. to: 1 = Sum_{n>=0} A001764(n)*x^n * Sum_{k=0..2*n+1} C(2*n+1,k)*(-x)^k where A001764(n) = C(3*n+1,n)/(3*n+1).

%e G.f.: A(x) = 1 + x + 9*x^2 + 216*x^3 + 9685*x^4 + 690129*x^5 +...

%e The coefficients satisfy:

%e 1 = 1*(1 - x) + 1*x*(1 - 3^2*x^1 + 3^2*x^2 - x^3) +

%e 9*x^2*(1 - 5^2*x^1 + 10^2*x^2 - 10^2*x^3 + 5^2*x^4 - x^5) +

%e 216*x^3*(1 - 7^2*x^1 + 21^2*x^2 - 35^2*x^3 + 35^2*x^4 - 21^2*x^5 + 7^2*x^6 - x^7) +

%e 9685*x^4*(1 - 9^2*x^1 + 36^2*x^2 - 84^2*x^3 + 126^2*x^4 - 126^2*x^5 + 84^2*x^6 - 36^2*x^7 + 9^2*x^8 - x^9) +

%e 690129*x^5*(1 - 11^2*x^1 + 55^2*x^2 - 165^2*x^3 + 330^2*x^4 - 462^2*x^5 + 462^2*x^6 - 330^2*x^7 + 165^2*x^8 - 55^2*x^9 + 11^2*x^10 - x^11) +...

%o (PARI) {a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, 2*m+1, binomial(2*m+1, k)^2*(-x)^k)+x*O(x^n)), n))}

%o for(n=0,31,print1(a(n),", "))

%Y Cf. A180716, A001764.

%K nonn,changed

%O 0,3

%A _Paul D. Hanna_, Sep 25 2012