|
|
A217037
|
|
Van der Waerden numbers w(2;5,n).
|
|
1
|
|
|
|
OFFSET
|
5,1
|
|
COMMENTS
|
w(2;5,5)=178 (Stevens and Shantaram, 1978),w(2;5,6)=206 (Kouril, 2006), and w(2;5,7)=260 (Ahmed).
|
|
REFERENCES
|
M. Kouril, A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation, Ph. D. Thesis, University of Cincinnati, Engineering: Computer Science and Engineering, 2006.
|
|
LINKS
|
Table of n, a(n) for n=5..7.
T. Ahmed, Some More van der Waerden Numbers
T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
R. Stevens and R. Shantaram, Computer-generated van der Waerden partitions, Math. Computation, 32 (1978), 635-636.
|
|
EXAMPLE
|
w(2;5,5)=178.
|
|
CROSSREFS
|
Cf. A171081, A171082.
Sequence in context: A053018 A046436 A114081 * A224600 A279093 A297400
Adjacent sequences: A217034 A217035 A217036 * A217038 A217039 A217040
|
|
KEYWORD
|
nonn,bref,hard,more
|
|
AUTHOR
|
Tanbir Ahmed, Sep 24 2012
|
|
STATUS
|
approved
|
|
|
|