login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6).
6

%I #35 Feb 23 2024 06:55:33

%S 2,-22,-117,-468,-1755,-6513,-24336,-91988,-351689,-1357408,-5277363,

%T -20625774,-80909257,-318173258,-1253243498,-4941450657,-19495914360,

%U -76945654032,-303737001009,-1199041027587,-4733273752831,-18683644465447,-73743457866962

%N a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6).

%C a(n) is equal to the rational part of the number sqrt(2*(13 + 3*sqrt(13))/13)*X(2*n-1), where X(n) = sqrt((13 -3*sqrt(13))/2)*X(n-1) + sqrt(13)*X(n-2) - sqrt((13 + 3*sqrt(13))/2)*X(n-3), with X(0) = 3, X(1) = sqrt((13 - 3*sqrt(13))/2), and X(2) = -(13 + sqrt(13))/2.

%C Let us observe that all numbers of the form a(n)*13^(-floor((n+3)/6)) are integers.

%C We note that the sequence X(n) is defined "similarly" to sequence Y(n) in the comments to A216540. The only difference between them is in initial condition: X(2) = -Y(2).

%D Roman Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).

%H Paolo Xausa, <a href="/A216801/b216801.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (13,-65,156,-182,91,-13).

%F G.f.: -x*(52*x^5-520*x^4+689*x^3-299*x^2+48*x-2) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - _Colin Barker_, Jun 01 2013

%e We have 4*a(3)=a(4), 4*a(4)=a(5)+a(3). The 3-valuation of a(n) for n=1,...,10 is contained in A167366. Moreover it can be obtained X(7) - 22*X(3) = 4*sqrt(2*(13-3*sqrt(13))), 4*X(5) - X(7) = 2*sqrt(26(13-3*sqrt(13))), and 15*X(5) - X(9) = 20*sqrt(26(13-3*sqrt(13))), which implies (15*X(5) - X(9))/(4*X(5) - X(7)) = 10.

%t LinearRecurrence[{13, -65, 156, -182, 91, -13}, {2, -22, -117, -468, -1755, -6513}, 25] (* _Paolo Xausa_, Feb 23 2024 *)

%Y Cf. A216540, A161905, A216861.

%K sign,easy

%O 1,1

%A _Roman Witula_, Sep 17 2012