login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(e^e^(n/e^gamma)).
0

%I #15 Sep 15 2024 01:44:46

%S 2,5,21,219,12686,15636041,4101615513409,12983864742986180266005,

%T 588668718546098799238432431873920456606,

%U 93859726557327916653208320240553220872245170780539985934198524439788

%N a(n) = floor(e^e^(n/e^gamma)).

%C Assuming the Riemann hypothesis we have a(n) < A134716(n) for n >= 4.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RobinsTheorem.html">Robin's Theorem</a>

%e a(3) = 219 because exp(exp(n/exp(gamma))) = 219.0062568829....

%t Table[Floor[E^E^(n/E^EulerGamma)], {n, 0, 9}]

%o (Magma) [Floor(Exp(Exp(n/Exp(EulerGamma(RealField(100)))))) : n in [0..9]];

%Y Cf. A001620, A134716, A058210.

%K nonn

%O 0,1

%A _Arkadiusz Wesolowski_, Sep 15 2012