login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-3*x+x^2)^2/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
3

%I #25 Apr 02 2024 11:38:53

%S 1,3,10,35,126,460,1690,6225,22950,84626,312019,1150208,4239225,

%T 15621426,57556155,212037241,781074572,2877011660,10596599460,

%U 39027676220,143735627861,529352597361,1949472483601,7179308057596,26438877143476,97364252272077

%N Expansion of (1-3*x+x^2)^2/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

%C A diagonal of the square array A223968.

%H Colin Barker, <a href="/A216710/b216710.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-28,35,-15,1).

%F a(n) = A223968(n,n+1).

%F G.f.: (1-3*x+x^2)^2/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

%F a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5) with a(0) = 1, a(1) = 3, a(2) = 10, a(3) = 35, a(4) = 126.

%t CoefficientList[Series[(1 - 3 x + x^2)^2/(1 - 9 x + 28 x^2 - 35 x^3 + 15 x^4 - x^5), {x, 0, 25}], x] (* _Michael De Vlieger_, Aug 19 2015 *)

%t LinearRecurrence[{9, -28, 35, -15, 1},{1, 3, 10, 35, 126},26] (* _Ray Chandler_, Aug 28 2015 *)

%o (PARI) Vec((1-3*x+x^2)^2/(1-9*x+28*x^2-35*x^3+15*x^4-x^5) + O(x^30)) \\ _Colin Barker_, Aug 19 2015

%Y Cf. A223968.

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Apr 09 2013