%I #13 Mar 19 2018 04:10:46
%S 3,1,3,3,1,1,5,1,3,1,1,3,3,1,3,2,2,3,3,1,3,3,1,1,3,2,3,3,1,3,3,1,1,5,
%T 1,3,3,1,1,3,1,1,5,1,1,5,4,5,5,1,5,5,1,1,5,4,5,5,1,1,5,1,3,1,1,3,2,3,
%U 3,1,3,3,1,1,3,1,1,5,5,1,3,1,1,5,1,1,5,5,1,3,1,1,3,3,1,3,2,2,3,3,2,3,3,1,3,3,1,1,5,1,3,3,1,3,2,3,3,1,1,3,3,1,3,2,3,3,2,2,6,2
%N Kolakoski sequence by 3-words.
%C The Kolakoski sequences (A000002) can be seen as being formed from the 6-set of 3-words -> {1,1,2}, {1,2,1}, {1,2,2}, {2,1,1}, {2,1,2} and {2,2,1}. Labeling these as 1-6 gives the sequence.
%C The first 6 appears at a(129).
%e 1,2,2,1,1,2 becomes 3,1
%o (JavaScript)
%o a=new Array();
%o a[1]=1;a[2]=2;a[3]=2;cd=1;ap=3;
%o for (i=4;i<1000;i++) {
%o if (a[ap]==1) a[i]=cd; else {a[i]=cd;a[i+1]=cd;i++}
%o ap++;cd=3-cd;}
%o for(i=1;i<300;i++) {
%o b=a.splice(1,3).join();
%o switch (b) {
%o case "1,1,2": {document.write("1,");break;}
%o case "1,2,1": {document.write("2,");break;}
%o case "1,2,2": {document.write("3,");break;}
%o case "2,1,1": {document.write("4,");break;}
%o case "2,1,2": {document.write("5,");break;}
%o case "2,2,1": {document.write("6,");break;}
%o }
%o }
%Y Cf. A000002.
%K nonn
%O 1,1
%A _Jon Perry_, Sep 11 2012