login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest prime factor of n^(2n) - 1 having the form k*n+1.
2

%I #20 May 17 2024 03:20:20

%S 3,7,5,11,7,29,17,19,11,23,13,53,29,31,17,10949,19,108301,41,43,23,47,

%T 73,101,53,109,29,59,31,373,257,67,103,71,37,149,191,79,41,83,43,173,

%U 89,181,47,659,97,197,101,103,53,107,109,881,113,229,59,709,61,977

%N Smallest prime factor of n^(2n) - 1 having the form k*n+1.

%C The corresponding values of k are in A216506.

%H Amiram Eldar, <a href="/A216487/b216487.txt">Table of n, a(n) for n = 2..670</a>

%F a(n) = Min{A187022(n), A187023(n)}.

%e a(7) = 29 because 7^14 - 1 = 2 ^ 4 * 3 * 29 * 113 * 911 * 4733 and the smallest prime divisor of the form k*n+1 is 29 = 4*7+1.

%t Table[p=First/@FactorInteger[n^(2*n)-1]; Select[p, Mod[#1, n] == 1 &, 1][[1]], {n, 2, 41}]

%t a[n_] := Module[{m = n + 1}, While[!PrimeQ[m] || PowerMod[n, 2*n, m] != 1, m += n]; m]; Array[a, 100, 2] (* _Amiram Eldar_, May 17 2024 *)

%o (PARI) a(n) = {my(m = n + 1); while(!isprime(m) || Mod(n, m)^(2*n) != 1, m += n); m;} \\ _Amiram Eldar_, May 17 2024

%Y Cf. A006486, A007571, A187022, A187023, A216506.

%K nonn

%O 2,1

%A _Michel Lagneau_, Sep 11 2012

%E Data corrected by _Amiram Eldar_, May 17 2024