login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), read by rows, given by (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, -1, 1, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938 .
0

%I #5 Feb 22 2013 14:40:40

%S 1,0,1,0,1,1,0,2,2,1,0,4,4,3,1,0,8,8,7,4,1,0,16,16,16,11,5,1,0,32,32,

%T 36,28,16,6,1,0,64,64,80,68,45,22,7,1,0,128,128,176,160,118,68,29,8,1,

%U 0,256,256,384

%N Triangle T(n,k), read by rows, given by (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, -1, 1, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938 .

%F G.f.: (1-2*x+y*x^2)/(1-2*x-y*x+2*y*x^2-y^2*x^3)

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k-1) + T(n-3,k-2), T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0 and T(n,k) = 0 if k<0 or if k>n .

%F Sum_{k, 0<=k<=n} T(n,k) = A034943(n+1) .

%F Sum_{k, 0<=k<=n} T(n,k)*2^k*(-1/2)^(n-k) = A052955(n) .

%F T(n+1,1) = A011782(n), T(n+2,2) = 2^n = A000079(n), T(n+3,3) = A045891(n+1) .

%e Triangle begins :

%e 1

%e 0, 1

%e 0, 1, 1

%e 0, 2, 2, 1

%e 0, 4, 4, 3, 1

%e 0, 8, 8, 7, 4, 1

%e 0, 16, 16, 16, 11, 5, 1

%e 0, 32, 32, 36, 28, 16, 6, 1

%Y Cf. A034943

%K nonn,tabl

%O 0,8

%A _Philippe Deléham_, Sep 04 2012