Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 30 2020 12:20:14
%S 0,1,2,8,31,119,456,1749,6721,25883,99892,386308,1496782,5809478,
%T 22584160,87922215,342741285,1337698515,5226732060,20442936360,
%U 80031775890,313585934610,1229695855440,4825705232010,18950613058026,74467158658974,292797216620776,1151895428382104
%N Number of peaks in all Dyck n-paths after changing each valley to a peak by the transform DU -> UD.
%H Vincenzo Librandi, <a href="/A216318/b216318.txt">Table of n, a(n) for n = 0..1000</a>
%F a(0)=0, a(1)=1, a(n>=2) = A001700(n-1) - Sum_{k=0..n-3} A001700(k) + Sum_{k=0..n-2} A003516(k) - 1.
%F G.f.: (16*x*(1+sqrt(1-4*x)+(5+3*sqrt(1-4*x)-2*x) * (-1+x)*x)) / ((1+sqrt(1-4*x))^5 * sqrt(1-4*x)).
%F a(n) ~ 5*2^(2*n-3)/sqrt(Pi*n). - _Vaclav Kotesovec_, Mar 21 2014
%F a(n) = C(2*n-2,n-1)*(5*(n-1)^2+5*(n-1)+2)/(2*n*(n+1)), n>1, a(0)=0, a(1)=1. - _Vladimir Kruchinin_, Oct 30 2020
%e The 5 Dyck 3-paths after changing DU to UD become two copies of UUUDDD with one peak each and three copies of UUDUDD with two peaks each giving a(3)=8.
%t CoefficientList[Series[(16*x*(1+Sqrt[1-4*x]+(5+3*Sqrt[1-4*x]-2*x)*(-1+x) x))/((1+Sqrt[1-4*x])^5*Sqrt[1-4*x]),{x,0,27}],x]
%o (PARI) x='x+O('x^50); concat([0], Vec((16*x*(1+sqrt(1-4*x)-(5+3*sqrt(1-4*x)-2*x)*(1-x)*x)) / ((1+sqrt(1-4*x))^5*sqrt(1-4*x)))) \\ _G. C. Greubel_, Apr 01 2017
%o (Maxima)
%o a(n):=if n<2 then n else binomial(2*n-2,n-1)*(5*(n-1)^2+5*(n-1)+2)/(2*n*(n+1)); /* _Vladimir Kruchinin_, Oct 30 2020 */
%Y Cf. A001700, A003516, A005891.
%K nonn
%O 0,3
%A _David Scambler_, Sep 03 2012