Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:46:03
%S 113,133,134,167,218,248,314,323,347,374,418,430,476,484,512,524,536,
%T 545,560,575,596,640,650,674,692,708,713,726,737,776,797,833,839,847,
%U 848,890,907,935,944,956,998,1001,1004,1037,1040,1080,1081,1091,1133,1175
%N Prime-free decades such that the next decade is also prime-free.
%C Numbers n such that 10n+1, 10n+3, 10n+7, 10n+9, 10n+11, 10n+13, 10n+17, and 10n+19 are composite. - _Charles R Greathouse IV_, Sep 07 2012
%H Charles R Greathouse IV, <a href="/A216288/b216288.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) ~ n. - _Charles R Greathouse IV_, Sep 07 2012
%F a(n) = A219998(n) - 1. - _V. Raman_, Dec 08 2012
%t ps0 = {2, 3, 5, 7}; t = {}; Do[ps1 = Select[Range[10*n, 10*n + 9], PrimeQ]; If[Length[ps0] == Length[ps1] == 0, AppendTo[t, n-1]]; ps0 = ps1, {n, 2, 1000}]; t (* _T. D. Noe_, Sep 03 2012 *)
%o (PARI) is(n)=nextprime(10*n)-10*n>20 \\ _Charles R Greathouse IV_, Sep 07 2012
%o (PARI) is(n)=!(isprime(10*n+1) || isprime(10*n+3) || isprime(10*n+7) || isprime(10*n+9) || isprime(10*n+11) || isprime(10*n+13) || isprime(10*n+17) || isprime(10*n+19)) \\ _Charles R Greathouse IV_, Sep 07 2012
%o (Magma) /* After the Greathouse's comment: */ [n: n in [0..1200] | forall{10*n+i: i in [1,3,7,9,11,13,17,19] | not IsPrime(10*n+i)}]; // _Bruno Berselli_, Sep 14 2012
%o (PARI) for(i=2, 1200, if(isprime(10*i+1)==0&&isprime(10*i+3)==0&&isprime(10*i+7)==0&&isprime(10*i+9)==0&&isprime(10*i+11)==0&&isprime(10*i+13)==0&&isprime(10*i+17)==0&&isprime(10*i+19)==0, print1(i", "))) /* V. Raman, Dec 08 2012 */
%Y Cf. A190639, A032352.
%Y Cf. A219998 (upper decade).
%K nonn,base
%O 1,1
%A _V. Raman_, Sep 03 2012