login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216231
Fibonacci with priority for primes: a(0)=0, a(1)=1, for n >= 2, a(n) = a(n-1) + a(k), where 0 < k <= n-2 is maximal index such that a(n-1) + a(k) is prime. If there is no such k, then a(n) = a(n-1) + a(n-2).
3
0, 1, 1, 2, 3, 5, 7, 12, 19, 31, 43, 74, 79, 153, 227, 239, 313, 552, 631, 643, 1274, 1427, 1979, 3253, 5232, 7211, 7213, 14424, 14737, 15289, 20521, 20533, 41054, 41281, 82335, 83609, 83621, 88853, 90127, 104551, 194678, 201889, 207121, 212353, 226777, 226789
OFFSET
0,4
COMMENTS
Conjecture: There exist arbitrarily long chains of consecutive prime terms.
LINKS
MAPLE
a:= proc(n) option remember; local k;
if n<2 then n
else for k from n-2 to 1 by -1
while not isprime(a(n-1) +a(k)) do od;
a(n-1) +a(`if`(k=0, n-2, k))
fi
end:
seq(a(n), n=0..100); # Alois P. Heinz, Mar 14 2013
MATHEMATICA
a216231[0]:=0;
a216231[1]:=1;
a216231[n_]:=a216231[n]=
Module[{k}, (k=NestWhile[#-1&, n-1, (#>1)&&!PrimeQ[a216231[n-1]+a216231[#]]&];
If[k==1, k=n-2]); a216231[n-1]+a216231[k]];
Table[a216231[n], {n, 0, 100}] (* Peter J. C. Moses, Mar 14 2013 *)
CROSSREFS
Cf. A000045.
Sequence in context: A060986 A359742 A054540 * A117537 A018065 A048818
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 14 2013
STATUS
approved