%I #23 Sep 16 2022 12:52:36
%S 5,11,71
%N Brocard's problem: positive integers m such that m^2 = n! + 1 for some n.
%C See A085692 and A146968 for links, references and comments. - _M. F. Hasler_, Nov 20 2018
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Brocard%27s_problem">Brocard's problem</a>
%F a(n) = A000196(A085692(n)) = A000196(A038507(A146968(n))) where A000196 = sqrt and A038507(n) = n! + 1. - _M. F. Hasler_, Nov 20 2018
%t Sqrt[#!+1]&/@Select[Range[1000],IntegerQ[Sqrt[#!+1]]&] (* _Harvey P. Dale_, Sep 29 2012 *)
%o (PARI) apply( sqrtint, A085692) \\ _M. F. Hasler_, Nov 20 2018
%o (PARI) select( is_A216071(m)=m^2==A084558(m^2)!+1, [0..99]) \\ _M. F. Hasler_, Nov 20 2018
%Y A085692, A146968, A216071 are all essentially the same sequence. - _N. J. A. Sloane_, Sep 01 2012
%K nonn,hard,bref
%O 1,1
%A _V. Raman_, Sep 01 2012