Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 01 2020 21:57:06
%S 1,2,5,2,2,6,2,2,2,2,2,6,2,2,2,2,2,2,2,2,2,2,2,6,2,2,2,2,2,2,2,2,2,2,
%T 2,2,2,2,2,2,2,2,2,2,2,2,2,6,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N Largest number m such that the Collatz trajectory starting at n contains all numbers not greater than m.
%C a(n) <= 6; a(A007283(n)) = 6;
%C a(n) > 1 for n > 1; a(n) <> 3; a(n) <> 4; a(n) <> 5 for n > 3;
%C a(n) = A216059(n) - 1.
%C In the first 100000 terms, there are only 16 terms greater than 2, all of which but one are equal to 6. - _Harvey P. Dale_, Nov 29 2019
%H Reinhard Zumkeller, <a href="/A216022/b216022.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Collatz_conjecture">Collatz conjecture</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%e n = 3->10->5->16->8->4->2->1 => {1_2_3_4_5 8 10 16}, a(3) = 5;
%e n = 4->2->1 => {1_2 4}, a(4) = 2;
%e n = 5->16->8->4->2->1 => {1_2 4 5 8 16}, a(5) = 2;
%e n = 6->3->10->5->16->8->4->2->1 => {1_2_3_4_5_6 8 10 16}, a(6) = 6.
%t scoll[n_]:=Sort[NestWhileList[If[EvenQ[#],#/2,3#+1] &,n,#>1 &]]; Join[{1,2},Table[i=1; While[scoll[n][[i]]==i,i++]; i-1,{n,3,86}]] (* _Jayanta Basu_, May 27 2013 *)
%t Join[{1,2},Flatten[Table[Position[Differences[Sort[ NestWhileList[ If[ EvenQ[#],#/2,3#+1]&,n,#>1&]]], _?(#>1&),1,1],{n,90}]]] (* _Harvey P. Dale_, Nov 29 2019 *)
%o (Haskell)
%o import Data.List (sort)
%o a216022 = length .
%o takeWhile (== 0) . zipWith (-) [1..] . sort . a070165_row
%Y Cf. A006370, A070165.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Sep 01 2012