login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215963
Numbers n such that the absolute value of the difference between the sum of the prime distinct divisors of n^2 + 1 that are congruent to 1 mod 8 and the sum of the prime distinct divisors of n^2 + 1 that are congruent to 5 mod 8 is a prime.
3
73, 123, 128, 132, 157, 172, 173, 177, 212, 216, 228, 233, 237, 265, 273, 293, 322, 336, 337, 360, 372, 377, 378, 382, 392, 411, 472, 487, 523, 528, 560, 592, 608, 616, 657, 663, 672, 678, 688, 707, 718, 748, 757, 767, 822, 824, 829, 843, 871, 893, 897, 903
OFFSET
1,1
LINKS
EXAMPLE
73 is in the sequence because 73^2 + 1 = 5330 = 2*5*13*41 and 41 - (5+13) = 23 is prime, where 41 == 1 mod 8 and {5, 13}==5 mod 8.
MAPLE
with(numtheory):for n from 1 to 1000 do:x:=factorset(n^2+1):n1:=nops(x):s1:=0:s3:=0:for m from 1 to n1 do: if irem(x[m], 8)=1 then s1:=s1+x[m]:else if irem(x[m], 8)=5 then s3:=s3+x[m]:else fi:fi:od:x:=abs(s1-s3):if s1>0 and s3>0 and type (x, prime)=true then printf(`%d, `, n):else fi:od:
MATHEMATICA
aQ[n_] := Module[{p = FactorInteger[n^2 + 1][[;; , 1]]}, (t1 = Total[Select[p, Mod[#, 8] == 1 &]]) > 0 && (t2 = Total[Select[p, Mod[#, 8] == 5 &]]) > 0 && PrimeQ@Abs[t1 - t2]]; Select[Range[1000], aQ] (* Amiram Eldar, Sep 09 2019 *)
CROSSREFS
Sequence in context: A144050 A087878 A142196 * A141991 A140742 A142929
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 29 2012
STATUS
approved