%I #6 Aug 30 2012 05:46:14
%S 1,1,1,1,1,1,1,2,2,1,2,4,10,4,2,2,12,29,29,12,2,5,34,366,313,366,34,5,
%T 5,136,1534,6150,6150,1534,136,5,15,500,35167,145563,847594,145563,
%U 35167,500,15,15,2440,188835,5219070,30312074,30312074,5219070,188835,2440,15
%N T(n,k)=Number of horizontal, vertical and diagonal neighbor colorings of the even squares of an nXk array with new integer colors introduced in row major order
%C Table starts
%C ..1.....1........1...........1............2.............2.............5
%C ..1.....1........2...........4...........12............34...........136
%C ..1.....2.......10..........29..........366..........1534.........35167
%C ..1.....4.......29.........313.........6150........145563.......5219070
%C ..2....12......366........6150.......847594......30312074...10289785215
%C ..2....34.....1534......145563.....30312074....9260821180.4761748786964
%C ..5...136....35167.....5219070..10289785215.4761748786964
%C ..5...500...188835...208181894.609400419815
%C .15..2440..6618472.11412814314
%C .15.10900.42756208
%H R. H. Hardin, <a href="/A215959/b215959.txt">Table of n, a(n) for n = 1..84</a>
%e Some solutions for n=4 k=4
%e ..0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x
%e ..x..2..x..3....x..2..x..3....x..1..x..0....x..2..x..3....x..2..x..3
%e ..1..x..4..x....4..x..3..x....2..x..0..x....4..x..5..x....4..x..5..x
%e ..x..0..x..5....x..5..x..2....x..3..x..1....x..5..x..2....x..0..x..4
%Y Column 1 is A000110(floor((n-1)/2))
%Y Odd squares: A216031
%K nonn,tabl
%O 1,8
%A _R. H. Hardin_ Aug 28 2012