Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Mar 05 2024 11:28:30
%S 1,1,1,10,37,716,4741,136760,1314377,50468752,637409641,30580648352,
%T 479025538861,27578021183168,515932095998957,34657964676194176,
%U 754078761294069649,57902855910383448320,1436649321508321044817,124128617507138965088768,3459197142121422461242421
%N Expansion of e.g.f.: sqrt( -LambertW(-x) / LambertW(x) ).
%H G. C. Greubel, <a href="/A215881/b215881.txt">Table of n, a(n) for n = 0..385</a>
%F E.g.f.: exp( Sum_{n>=0} (2*n+1)^(2*n) * x^(2*n+1)/(2*n+1)! ).
%F a(n) = Sum_{k=0..n} -(-1)^k*C(n,k) * (k - 1/2)^(k-1) * (n-k + 1/2)^(n-k-1) / 4.
%F a(n) ~ c * n^(n-1), where c = 1/2*(1-LambertW(exp(-1))) / sqrt(LambertW(exp(-1))) = 0.6836640292259232... if n is even and c = 1/2*(1+LambertW(exp(-1))) / sqrt(LambertW(exp(-1))) = 1.2113614261884947... if n is odd. - _Vaclav Kotesovec_, Nov 27 2012
%e E.g.f.: A(x) = 1 + x + x^2/2! + 10*x^3/3! + 37*x^4/4! + 716*x^5/5! + 4741*x^6/6! +...
%e such that A(x) = sqrt( -LambertW(-x)/LambertW(x) ) where
%e LambertW(x) = x - 2*x^2/2! + 9*x^3/3! - 64*x^4/4! + 625*x^5/5! - 7776*x^6/6! + 117649*x^7/7! - 2097152*x^8/8! +...+ (-n)^(n-1)*x^n/n! +...
%e Related expansions:
%e log(A(x)) = x + 9*x^3/3! + 625*x^5/5! + 117649*x^7/7! + 43046721*x^9/9! +...+ (2*n-1)^(2*n-2)*x^(2*n-1)/(2*n-1)! +...
%t CoefficientList[Series[Sqrt[-LambertW[-x]/LambertW[x]], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Nov 27 2012 *)
%o (PARI) {a(n)=local(LW=sum(m=1, n+1,-(-1)^m*m^(m-1)*x^m/m!)+x^2*O(x^n)); n!*polcoeff(sqrt(-subst(LW, x, -x)/LW), n)}
%o (PARI) {a(n)=n!*polcoeff(exp(sum(m=0, n, (2*m+1)^(2*m)*x^(2*m+1)/(2*m+1)!)+x*O(x^n)), n)}
%o (PARI) {a(n)=sum(k=0, n, -(-1)^k*binomial(n, k)*(k-1/2)^(k-1)*(n-k+1/2)^(n-k-1)/4)}
%o for(n=0,21,print1(a(n),", "))
%o (PARI) x='x+O('x^30); Vec(serlaplace(sqrt(-lambertw(-x)/lambertw(x)))) \\ _G. C. Greubel_, Feb 19 2018
%o (GAP) List([0..25],n->Sum([0..n],k->-(-1)^k*Binomial(n,k)*(k-(1/2))^(k-1)*(n-k+(1/2))^(n-k-1)/4)); # _Muniru A Asiru_, Feb 19 2018
%Y Cf. A215880, A215882, A215890, A138734, A216143.
%K nonn
%O 0,4
%A _Paul D. Hanna_, Aug 25 2012