login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of permutations of 0..floor((n*9-2)/2) on odd squares of an nX9 array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing
1

%I #4 Aug 25 2012 05:48:04

%S 1,14,290,11694,307874,14296434,386699176,18255280444,494952307400,

%T 23397688110992,634501639410480,29997930933948284,813501010455768664,

%U 38461009542931961924,1043008988814913191696,49311812528326463481148

%N Number of permutations of 0..floor((n*9-2)/2) on odd squares of an nX9 array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing

%C Column 9 of A215870

%H R. H. Hardin, <a href="/A215869/b215869.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 1385*a(n-2) -131648*a(n-4) -318070*a(n-6) -4160916*a(n-8) -1097892*a(n-10) +648*a(n-12)

%e Some solutions for n=4

%e ..x..0..x..2..x..4..x..8..x....x..0..x..2..x..4..x..6..x

%e ..1..x..3..x..5..x.11..x.12....1..x..3..x..7..x.10..x.13

%e ..x..6..x..7..x.13..x.14..x....x..5..x..9..x.12..x.15..x

%e ..9..x.10..x.15..x.16..x.17....8..x.11..x.14..x.16..x.17

%K nonn

%O 1,2

%A _R. H. Hardin_ Aug 25 2012