login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215834
Fourth derivative of f_n at x=1, where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways.
3
0, 8, 52, 32, 156, 100, 80, 56, 344, 228, 148, 172, 124, 152, 104, 80, 56, 640, 440, 300, 324, 252, 220, 172, 268, 196, 148, 124, 248, 176, 128, 128, 104, 104, 80, 56, 56, 1068, 760, 536, 372, 560, 464, 396, 324, 292, 244, 196, 444, 348, 276, 252, 316, 244
OFFSET
1,2
COMMENTS
For the ordering of functions f_n see A215703.
LINKS
MAPLE
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
end:
f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
end():
a:= n-> 4!*coeff(series(subs(x=x+1, f(n)), x, 5), x, 4):
seq(a(n), n=1..100);
CROSSREFS
Row n=4 of A215703.
Number of distinct values of a(n) taken for functions with m x's: A199205.
Sequence in context: A267637 A238648 A341626 * A180319 A199706 A302318
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 24 2012
STATUS
approved