login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A215815
Even numbers n such that the Lucas number L(n) can be written in the form a^2 + 3*b^2.
3
2, 4, 20, 22, 26, 28, 46, 52, 68, 76, 116, 118, 140, 164, 172, 194, 242, 244, 284, 314, 316, 356, 358, 362, 382, 404, 428, 458, 478, 598, 698, 746, 772, 794, 812, 914, 988, 1004, 1082
OFFSET
1,1
COMMENTS
These Lucas numbers L(n) have no prime factor congruent to 2 (mod 3) to an odd power.
MATHEMATICA
Select[Range[2, 200, 2], Length[FindInstance[x^2 + 3*y^2 == LucasL[#], {x, y}, Integers]] > 0 &] (* G. C. Greubel, Apr 14 2017 *)
PROG
(PARI) for(i=2, 500, a=factorint(fibonacci(i-1)+fibonacci(i+1))~; has=0; for(j=1, #a, if(a[1, j]%3==2&&a[2, j]%2==1, has=1; break)); if(has==0&&i%2==0, print(i", ")))
CROSSREFS
KEYWORD
nonn,more
AUTHOR
V. Raman, Aug 23 2012
EXTENSIONS
a(22)-a(39) from V. Raman, Aug 28 2012
STATUS
approved