login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215774
Number of undirected labeled graphs on n+4 nodes with exactly n cycle graphs as connected components.
2
0, 12, 127, 742, 3157, 10857, 31899, 82929, 195459, 425139, 864864, 1662661, 3045406, 5349526, 9059946, 14858646, 23684298, 36804558, 55902693, 83180328, 121478203, 174416935, 246559885, 343600335, 472575285, 642108285, 862683822, 1146955887, 1510093452
OFFSET
0,2
LINKS
FORMULA
G.f.: (43*x^3+31*x^2+19*x+12)*x/(1-x)^9.
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(15*n^3+30*n^2+245*n+286)/5760.
EXAMPLE
a(1) = 12 = 4!/2: (1-2-3-4-5-1), (1-2-3-5-4-1), (1-2-4-3-5-1), (1-2-4-5-3-1), (1-2-5-3-4-1), (1-2-5-4-3-1), (1-3-2-4-5-1), (1-3-2-5-4-1), (1-3-4-2-5-1), (1-3-5-2-4-1), (1-4-2-3-5-1), (1-4-3-2-5-1).
MAPLE
a:= n-> (6864+(20180+(22980+(13295+(4536+(1070+(180+15*n)*
n)*n)*n)*n)*n)*n)*n/5760:
seq(a(n), n=0..40);
CROSSREFS
A diagonal of A215771.
Sequence in context: A124797 A204768 A045508 * A275941 A173359 A199037
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 23 2012
STATUS
approved