login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primes of the form 1 + b^2048 for 1 < b < 10^n.
0

%I #9 Aug 30 2012 11:58:10

%S 0,0,1,4,40,276

%N Number of primes of the form 1 + b^2048 for 1 < b < 10^n.

%C Primes 1 + b^2048 are a form of generalized Fermat primes.

%C It is conjectured that a(n) is asymptotic to 0.00352764*li(10^n)

%H Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/results.html">Status of the smallest base values yielding Generalized Fermat primes</a>

%H Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/stat.html">How many prime numbers appear in a sequence ?</a>

%H Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/papers/ccdgfpn.html">A Problem on the Conjecture Concerning the Distribution of Generalized Fermat Prime numbers (a new method for the search for large primes)</a>

%e a(4) = 4 because the generalized Fermat numbers F_11(b) where b<10^4 are prime only for b = 150, 2558, 4650, 4772.

%o (PARI) a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^2048+1))

%Y Cf. A215047, A215048, A215049, A215050, A215051, A215057, A215058, A215698.

%K nonn

%O 1,4

%A _Henryk Dabrowski_, Aug 21 2012