|
|
A215684
|
|
Let p=prime=a(n); then a(n+1) = smallest prime q>p such that 2p+q and 2q+p are both primes.
|
|
2
|
|
|
3, 5, 7, 17, 67, 107, 277, 353, 487, 557, 787, 797, 853, 983, 1033, 1163, 1597, 1637, 1657, 1697, 1867, 1913, 2347, 2543, 2833, 2897, 2953, 2957, 3343, 3413, 3607, 3623, 3643, 3863, 3907, 4013, 4447, 4583, 4987, 5087, 5113, 5507, 6277, 6653, 7027, 7433, 7603
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
2*3+5=11 and 2*5+3=13 are both prime, so a(2) = 5.
2*7+17=31 and 2*17+7=41 are both prime, so a(4) = 17.
|
|
MATHEMATICA
|
a=3; s={a}; m=100; Do[n1=PrimePi[a]+1; Do[b=Prime[n]; If[PrimeQ[2*a+b]&&PrimeQ[2*b+a], AppendTo[s, b]; a=b; Break[]], {n, n1, n1+100000}], {m-1}]; s
spq[n_]:=Module[{p=NextPrime[n]}, While[!PrimeQ[2n+p]||!PrimeQ[2p+n], p=NextPrime[p]]; p]; NestList[spq, 3, 50] (* Harvey P. Dale, Apr 06 2019 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|