login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*a(n-2) - a(n-3), with a(0)=3, a(1)=0, and a(2)=6.
14

%I #37 Mar 10 2020 15:05:16

%S 3,0,6,-3,18,-15,57,-63,186,-246,621,-924,2109,-3393,7251,-12288,

%T 25146,-44115,87726,-157491,307293,-560199,1079370,-1987890,3798309,

%U -7043040,13382817,-24927429,47191491,-88165104,166501902,-311686803,587670810,-1101562311

%N a(n) = 3*a(n-2) - a(n-3), with a(0)=3, a(1)=0, and a(2)=6.

%C The Berndt-type sequence number 5 for the argument 2Pi/9 defined by the first relation from the section "Formula" below. The respective sums with negative powers of the cosines form the sequence A215885. Additionally if we set b(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n and c(n) = c(4)*c(2)^n + c(1)*c(4)^n + c(2)*c(1)^n, where c(j):=2*cos(2*Pi*j/9), then the following system of recurrence equations holds true: b(n) - b(n+1) = a(n), a(n+1) - a(n) = c(n+1), a(n+2) - 2*a(n)=c(n). All three sequences satisfy the same recurrence relation: X(n+3) - 3*X(n+1) + X(n) = 0. Moreover we have a(n+1) + A215665(n) + A215666(n) = 0 since c(1) + c(2) + c(4) = 0, b(n)=A215665(n) and c(n)=A215666(n).

%C If X(n) = 3*X(n-2) - X(n-3), n in Z, with X(n) = a(n) for every n=0,1,..., then X(-n) = A215885(n) for every n=0,1,...

%C From initial values and the recurrence formula we deduce that a(n)/3 and a(3n+1)/9 are all integers. We have a(n)=3*(-1)^n *A188048(n) and a(2n)=A215455(n). Furthermore the following decomposition holds: (X - c(1)^n)*(X - c(2)^n)*(X - c(4)^n) = X^3 - a(n)*X^2 + ((a(n)^2 - a(2*n))/2)*X + (-1)^(n+1), which implies the relation (c(1)*c(2))^n + (c(1)*c(4))^n + (c(2)*c(4))^n = (-c(1))^(-n) + (-c(2))^(-n) + (-c(4))^(-n) = (a(n)^2 - a(2*n))/2.

%D D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).

%D R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

%H Michael De Vlieger, <a href="/A215664/b215664.txt">Table of n, a(n) for n = 0..3649</a>

%H Kai Wang, <a href="https://www.researchgate.net/publication/337943524_Fibonacci_Numbers_And_Trigonometric_Functions_Outline">Fibonacci Numbers And Trigonometric Functions Outline</a>, (2019).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,-1).

%F a(n) = c(1)^n + c(2)^n + c(4)^n, where c(j) := 2*cos(2*Pi*j/9).

%F G.f.: 3*(1-x^2)/(1-3*x^2+x^3).

%e We have c(1)^2 + c(2)^2 + c(4)^2 + 2*(c(1)^3 + c(2)^3 + c(4)^3) = 0 and 3*a(7) + a(8) = a(3).

%t LinearRecurrence[{0,3,-1}, {3,0,6}, 50].

%o (PARI) Vec(3*(1-x^2)/(1-3*x^2+x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012

%Y Cf. A215455, A215634, A215635, A215636, A215007, A214699, A214683.

%K sign,easy

%O 0,1

%A _Roman Witula_, Aug 20 2012