The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215642 Primes p such that there is no D such that p+D, p-D, p+2*D, p-2*D are all primes. 2
 2, 3, 5, 7, 11, 13, 19, 23, 31, 37, 41, 43, 47, 53, 59, 61, 73, 79, 83, 103, 107, 109, 113, 127, 137, 139, 149, 151, 157, 179, 181, 199, 223, 227, 229, 239, 251, 271, 277, 281, 293, 311, 331, 349, 353, 359, 367, 379, 383, 389, 397, 401, 409, 421, 431, 439, 487, 499, 541 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(243)=34613 is the last term. LINKS Joerg Arndt, Table of n, a(n) for n = 1..243 EXAMPLE 17 doesn't occur in the sequence, because there is D=6: 17-12, 17-6, 17+6 and 17+12 are all primes: 5, 11, 23, 29. MATHEMATICA fQ[p_] := Module[{d = 1}, While[4d < p && !(PrimeQ[p-4d] && PrimeQ[p-2d] && PrimeQ[p+2d] && PrimeQ[p+4d]), d++]; 4d > p]; Select[Prime[Range[4000]], fQ] (* T. D. Noe, Aug 20 2012 *) PROG (PARI) N=10^9; default(primelimit, N); print1(2, ", "); { forprime (p=3, N,     D=2;  D2 = D << 1;     t = 1;     while ( p > D2,         if ( isprime(p+D) & isprime(p-D) &              isprime(p+D2) & isprime(p-D2)         , /* then */             t=0; break()         );         D += 2;  D2 += 4;     );     if ( t==1, print1(p, ", ") ); ); } /* Joerg Arndt, Aug 20 2012 */ CROSSREFS Cf. A078611. Sequence in context: A232824 A078334 A108696 * A092581 A130807 A338577 Adjacent sequences:  A215639 A215640 A215641 * A215643 A215644 A215645 KEYWORD nonn AUTHOR Alex Ratushnyak, Aug 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 11:58 EDT 2021. Contains 345098 sequences. (Running on oeis4.)