%I #12 Oct 15 2018 11:44:10
%S 1,7,73,9271,3195367,6769801,15413863,24540337,47424961,52268743,
%T 146583343,384586849,469501471,475882081,859764727,1097475991,
%U 1169323417,1400034919,2518532047,2870143993,3258854623,5609707729,6022970047,6420870271,9011348521
%N Odd integers n such that 2^n == 2^10 (mod n).
%C Also, the odd solutions to 2^(n-10) == 1 (mod n). The only even solution is n=10.
%C For all m, 2^A033982(m)-1 belongs to this sequence.
%H Max Alekseyev, <a href="/A215612/b215612.txt">Table of n, a(n) for n = 1..209</a> (all terms below 10^14)
%t m = 2^10; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^7, 2], PowerMod[2, #, #] == m &]] (* _Robert Price_, Oct 15 2018 *)
%Y The odd terms of A015932.
%Y Cf. A173572, A033984, A215610, A215611, A215613
%K nonn
%O 1,2
%A _Max Alekseyev_, Aug 17 2012