login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of psi(-x)^2 * f(-x)^6 in powers of x where psi(), f() are Ramanujan theta functions.
4

%I #15 Mar 12 2021 22:24:46

%S 1,-8,22,-16,-27,40,-18,80,-94,-40,0,-48,359,-80,-130,-320,0,160,214,

%T 400,-230,-152,-594,416,-343,240,518,-400,0,200,830,-592,-396,-776,0,

%U -400,1098,200,0,1120,729,-552,-2068,272,-1670,800,0,400,594,1480,598,48

%N Expansion of psi(-x)^2 * f(-x)^6 in powers of x where psi(), f() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A215600/b215600.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of psi(-x)^8 * chi(-x^2)^6 = f(-x)^8 / chi(-x^2)^2 in powers of x where psi(), chi(), f() are Ramanujan theta functions. - _Michael Somos_, Sep 03 2013

%F Expansion of q^(-1/2) * (eta(q)^4 * eta(q^4) / eta(q^2))^2 in powers of q.

%F Euler transform of period 4 sequence [ -8, -6, -8, -8, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^15 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A225564. - _Michael Somos_, Sep 03 2013

%F Convolution square of A215597.

%F a(2*n) = A215601(n). - _Michael Somos_, Sep 03 2013

%e 1 - 8*x + 22*x^2 - 16*x^3 - 27*x^4 + 40*x^5 - 18*x^6 + 80*x^7 - 94*x^8 + ...

%e q - 8*q^3 + 22*q^5 - 16*q^7 - 27*q^9 + 40*q^11 - 18*q^13 + 80*q^15 - 94*q^17 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^6 EllipticTheta[ 2, Pi/4, q^(1/2)]^2 / (2 q^(1/4)), {q, 0, n}] (* _Michael Somos_, Sep 03 2013 *)

%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^8 / QPochhammer[ q^2, q^4]^2, {q, 0, n}] (* _Michael Somos_, Sep 03 2013 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^4 * eta(x^4 + A) / eta(x^2 + A))^2, n))}

%Y Cf. A215597, A215601, A225564.

%K sign

%O 0,2

%A _Michael Somos_, Aug 16 2012