login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-ary n-tuples (a_1,...,a_n) such that the string a_1...a_n is preprime.
3

%I #16 Jun 28 2019 04:17:43

%S 1,3,14,90,829,9695,141280,2447592,49212093,1125217654,28823053258,

%T 817378772782,25417591386199,859893804621774,31439503146486552,

%U 1235301513403984512,51906185332282554369,2322562816163062723410,110253678955655801174716,5534198888175777261628156

%N Number of n-ary n-tuples (a_1,...,a_n) such that the string a_1...a_n is preprime.

%C See A215474 for the definitions.

%H Alois P. Heinz, <a href="/A215475/b215475.txt">Table of n, a(n) for n = 1..387</a>

%F a(n) = Sum_{j=1..n} (1/j)*Sum_{d|j} mu(j/d)*n^d.

%F a(n) = A215474(n,n) = A143328(n,n).

%e a(3) = 14 = card{000, 001, 002, 010, 011, 012, 020, 021, 022, 111, 112, 121, 122, 222}.

%t a[n_] := Sum[1/j Sum[MoebiusMu[j/d] n^d, {d, Divisors[j]}], {j, n}];

%t Array[a, 20] (* _Jean-François Alcover_, Jun 27 2019 *)

%o (Sage)

%o def A215475(n):

%o return add((1/j)*add(moebius(j/d)*n^d for d in divisors(j)) for j in (1..n))

%o [A215475(n) for n in (1..20)]

%o (PARI) a(n) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*n^d)/j); \\ _Michel Marcus_, Jun 27 2019

%Y Cf. A215474, A143328.

%K nonn

%O 1,2

%A _Peter Luschny_, Aug 12 2012