Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 01 2016 13:06:17
%S 1,1,2,4,8,2,0,2,9,10,18,27,4,16,11,7,2,4,13,9,0,18,4,4,2,10,3,5,26,
%T 54,21,32,4,29,42,14,10,44,57,44,63,6,5,10,52,23,32,44,64,74,71,33,18,
%U 60,93,29,46,48,60,84,38,26,39,46,83,81,25,59,93,22,47,24,34,53
%N a(1)=1, a(n) = (sum of previous terms) mod (a(n-1)+n).
%C Indices of 0's: 7, 21, 956, 1576, 1964, 55346, 70460, 99845, 399114, 544095, 35321849, 77073660, ...
%C Indices of 1's: 1, 2, 129, 193, 262, 4495, 99781, 651856, 35351437, ...
%C Indices such that a(n)=n: 1, 4, 9, 10, 32, 176, 266, 414, 432, 440, 858, 5953, 6030, 15146, 1408096, 3138130, 35659404, 44722350, 109021513, 790542727, ...
%H Harvey P. Dale, <a href="/A215452/b215452.txt">Table of n, a(n) for n = 1..1000</a>
%F a(1)=1, a(n) = (a(0)+...+a(n-1)) mod (a(n-1)+n).
%t nxt[{t_,n_,a_}]:={t+a,n+1,Mod[t+a,a+n+1]}; NestList[nxt,{0,1,1},80][[All,3]] (* _Harvey P. Dale_, Sep 01 2016 *)
%o (Python)
%o sum = a = 1
%o for n in range(2,333):
%o print a,
%o a = sum % (a+n)
%o sum += a
%Y Cf. A094405, A066910, A215451.
%K nonn
%O 1,3
%A _Alex Ratushnyak_, Aug 11 2012