Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Nov 25 2024 19:28:25
%S 7,11,17,31,37,73,271,331,359,373,673,733,1033,2297,3119,3461,3923,
%T 5323,5381,5419,6073,6353,9103,9887,18289,23549,25349,31333,32933,
%U 33349,35747,37339,37361,37489,47533,84299,92333,93241,95093,98491,133733,136333,139333
%N Primes that remain prime when a single digit 3 is inserted between any two consecutive digits or as the leading or trailing digit.
%H Robert Israel, <a href="/A215419/b215419.txt">Table of n, a(n) for n = 1..150</a>
%e 18289 is prime and also 182893, 182839, 182389, 183289, 138289, 318289.
%p filter:= proc(n) local L,d,k,M;
%p if not isprime(n) then return false fi;
%p L:= convert(n,base,10);
%p d:= nops(L);
%p for k from 0 to d do
%p M:= [seq(L[i],i=1..k),3,seq(L[i],i=k+1..d)];
%p if not isprime(add(M[i]*10^(i-1),i=1..d+1)) then return false fi;
%p od;
%p true
%p end proc;
%p select(filter, [seq(i,i=3..2*10^5,2)]); # _Robert Israel_, Oct 09 2017
%t ins@n_:=Insert[IntegerDigits@n,3,#]&/@Range@(IntegerLength@n+1);
%t Cases[{#,FromDigits@#&/@ins@#}&/@ Cases[Range[11,70000],_?PrimeQ], {_,{_?PrimeQ..}}][[All,1]] (* _Hans Rudolf Widmer_, Dec 21 2023 *)
%Y Cf. A215417, A069246, A215420, A215421
%K nonn,base
%O 1,1
%A _Paolo P. Lava_, Aug 10 2012