The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215364 E.g.f. satisfies: A(x) = 1 + x*A(x)^2*cosh(x*A(x)). 1
 1, 1, 4, 33, 408, 6725, 139200, 3475717, 101722880, 3416079753, 129507425280, 5471712276041, 254965505507328, 12990483544072333, 718474796305989632, 42871067358096134445, 2745230569464318197760, 187780115708775158008337, 13665196427126843296972800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f. satisfies: (1) A(x) = (1/x)*Series_Reversion(x-x^2*cosh(x)). (2) A(x) = 1/(1 - x*A(x)*cosh(x*A(x)))). (3) A(x-x^2*cosh(x)) = 1/(1-x*cosh(x)). a(n) = [x^n/n!] 1/(1 - x*cosh(x))^(n+1) / (n+1). a(n) ~ n^(n-1) * s*sqrt(1/(6-2*s-r^2*s^2+r^2*s^3)) / (exp(n) * r^n), where r = 0.2278231894714399793... and s = 1.855593992316816009... are the roots of the equations r*s*(2*cosh(r*s) + r*s*sinh(r*s)) = 1, 1 + r*s^2*cosh(r*s) = s. - Vaclav Kotesovec, Jan 13 2014 EXAMPLE E.g.f: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 408*x^4/4! + 6725*x^5/5! +... MATHEMATICA CoefficientList[1/x*InverseSeries[Series[x-x^2*Cosh[x], {x, 0, 21}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 13 2014 *) PROG (PARI) {a(n)=n!*polcoeff(1/(1 - x*cosh(x+x*O(x^n)))^(n+1)/(n+1), n)} (PARI) {a(n)=n!*polcoeff((1/x)*serreverse(x-x^2*cosh(x+x*O(x^n))), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A215363, A213644. Sequence in context: A269926 A331794 A156132 * A213641 A343673 A343686 Adjacent sequences:  A215361 A215362 A215363 * A215365 A215366 A215367 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 08 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 01:37 EST 2021. Contains 349426 sequences. (Running on oeis4.)