Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Aug 07 2012 11:33:56
%S 1,1,2,-3,2,-9,6,4,-36,75,-30,4,-60,255,-330,90,8,-180,1290,-3465,
%T 3150,-630,8,-252,2730,-12495,23940,-16380,2520,16,-672,10248,-71400,
%U 235305,-343980,185220,-22680,16,-864
%N Coefficient triangle of the modified Hermite-Bell polynomials for power -2.
%C The modified Hermite-Bell polynomials for power -2 are defined by the formula H(n;-2;sqrt(x))*2^(-floor(n/2)-(1-(-1)^n)/2), where H(n;-2;x) denotes the n-th Hermite-Bell polynomial - see A215216 for the definition and details.
%D R. Witula, E. Hetmaniok, D. Slota, The Hermite-Bell polynomials for negative powers, (submitted, 2012)
%e If we set V(n;x):= H(n;-2;sqrt(x))*2^(-floor(n/2)-(1-(-1)^n)/2) then we obtain V(0;x)=V(1;x)=1, V(2;x)=2-3*x, V(3;x)=2-9*x+6*x^2, V(4;x)=4-36*x+75*x^2-30*x^3, V(5;x)=4-60*x+255*x^2-330*x^3+90*x^4.
%e 1;
%e 1;
%e 2,-3;
%e 2,-9,6;
%e 4,-36,75,-30;
%e 4,-60,255,-330,90;
%e 8,-180,1290,-3465,3150,-630;
%e 8,-252,2730,-12495,23940,-16380,2520;
%e 16,-672,10248,-71400,235305,-343980,185220,-22680;
%e 16,-864,17640,-173880,877905,-2226420,2593080,-1134000,113400;
%p H := proc(n,r,x)
%p local e,d ;
%p e := exp(-1/x^r) ;
%p for d from 1 to n do
%p e := diff(e,x) ;
%p end do:
%p x^((r+1)*n)*exp(1/x^r)*e ;
%p expand(%) ;
%p end proc;
%p A215269 := proc(n,k)
%p subs(x=sqrt(x),H(n,2,x))*2^(-floor(n/2)-(1-(-1)^n)/2) ;
%p coeftayl( %,x=0,k) ;
%p end proc:
%p seq(seq( A215269(n,k),k=0..max(0,n-1)),n=0..12) ; # _R. J. Mathar_, Aug 07 2012
%Y Cf. A215216, A066667.
%K sign,tabf
%O 0,3
%A _Roman Witula_, Aug 07 2012