login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that sigma(k) > 5*k.
8

%I #30 Feb 13 2021 06:29:41

%S 122522400,147026880,183783600,205405200,220540320,232792560,

%T 245044800,273873600,294053760,328648320,367567200,410810400,

%U 428828400,441080640,465585120,490089600,492972480,497296800,514594080,537213600,547747200,551350800,563603040

%N Numbers k such that sigma(k) > 5*k.

%C The asymptotic density of this sequence is > 1/a(1) ~ 8*10^(-9). Wall et al. (1972) proved that it is < 0.0122. - _Amiram Eldar_, Feb 13 2021

%H Donovan Johnson, <a href="/A215264/b215264.txt">Table of n, a(n) for n = 1..10000</a>

%H Richard Laatsch, <a href="http://www.jstor.org/stable/2690424">Measuring the Abundancy of Integers</a>, Mathematics Magazine, Vol. 59, No. 2 (1986), pp. 84-92, <a href="https://isidore.co/misc/Physics%20papers%20and%20books/Zotero/storage/99C5C5IC/Laatsch%20-%201986%20-%20Measuring%20the%20Abundancy%20of%20Integers.pdf">alternative link</a>.

%H Gordon L. Miller and Mary T. Whalen, <a href="https://doi.org/10.1111/j.1949-8594.1995.tb15776.x">Multiply Abundant Numbers</a>, School Science and Mathematics, Volume 95, Issue 5 (May 1995), pp. 256-259.

%H Charles R. Wall, Phillip L. Crews and Donald B. Johnson, <a href="https://doi.org/10.1090/S0025-5718-1972-0327700-7">Density Bounds for the Sum of Divisors Function</a>, Mathematics of Computation, Vol. 26, No. 119 (1972), pp. 773-777; <a href="https://doi.org/10.1090/S0025-5718-1977-0427251-X">Errata</a>, Vol. 31, No. 138 (1977), p. 616.

%F A001221(a(n)) >= 6 (Laatsch, 1986). - _Amiram Eldar_, Nov 07 2020

%e sigma(122522400) = 614210688 and 614210688 > 5 * 122522400.

%o (PARI) for(n=122522400, 563603040, if(sigma(n)>5*n, print1(n ", ")))

%Y Cf. A000203, A001221, A023199, A068403, A068404.

%K nonn

%O 1,1

%A _Donovan Johnson_, Aug 07 2012