login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of terms in n-th row of A037306.
2

%I #17 May 24 2023 07:33:35

%S 1,1,1,2,4,36,225,7840,313600,45302400,8930250000,8373836401920,

%T 9001015156742400,41813367543204433176,325385777102562972821025,

%U 8270190445766978650521600000,377177413291384771899817984000000,62187743659065606074696974956949929984

%N Product of terms in n-th row of A037306.

%C Also products of terms in rows of A047996.

%H Alois P. Heinz, <a href="/A215251/b215251.txt">Table of n, a(n) for n = 1..50</a>

%H R. Bekes, J. Pedersen and B. Shao, <a href="https://www.jstor.org/stable/10.4169/college.math.j.43.1.025">Mad tea party cyclic partitions</a>, College Math. J., 43 (2012), 24-36.

%p with (numtheory):

%p a:= n-> mul (add(phi(d)*binomial(n/d, k/d),

%p d=divisors(igcd(n, k))), k=0..n)/n^(n+1):

%p seq (a(n), n=1..20); # _Alois P. Heinz_, Sep 06 2012

%t t[n_, k_] := Total[EulerPhi[#] * Binomial[n/#, k/#]& /@ Divisors[GCD[n, k]]]/n; Table[Times @@ Table[t[n, k], {k, 1, n}], {n, 1, 18}] (* _Jean-François Alcover_, Mar 07 2014 *)

%Y Cf. A037306, A008965, A047996.

%K nonn,easy

%O 1,4

%A _N. J. A. Sloane_, Sep 05 2012