login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215230
Number of length-7 0..k arrays connected end-around, with no sequence of L<n elements immediately followed by itself (periodic "squarefree").
1
0, 0, 840, 10080, 57960, 228480, 710640, 1874880, 4379760, 9313920, 18378360, 34114080, 60180120, 101687040, 165590880, 261152640, 400468320, 599074560, 876634920, 1257711840, 1772629320, 2458431360, 3359941200, 4530926400
OFFSET
1,3
COMMENTS
Row 7 of A215228.
LINKS
FORMULA
Empirical: a(n) = n^7 - 7*n^5 + 14*n^3 - 8*n = n*(n-1)*(n-2)*(n+2)*(n+1)*(n^2-2).
Conjectures from Colin Barker, Jul 23 2018: (Start)
G.f.: 840*x^3*(1 + 4*x + x^2) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=5:
..1....5....1....0....1....0....4....0....0....4....3....1....3....0....3....1
..2....4....3....1....0....3....0....4....5....2....0....4....5....3....2....2
..5....2....1....3....4....2....3....2....4....5....3....1....0....4....3....4
..3....4....5....1....5....3....4....5....1....4....5....2....5....5....5....0
..0....5....2....4....4....4....0....0....0....3....0....0....3....0....1....5
..5....1....5....1....3....2....5....2....4....0....3....2....0....2....2....3
..3....3....4....3....4....1....0....3....5....5....1....3....1....5....4....5
CROSSREFS
Cf. A215228.
Sequence in context: A177021 A276161 A135038 * A171260 A166758 A188781
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 06 2012
STATUS
approved